
CS166 Handout 06
Spring 2018 April 10, 2018

Problem Set 1: Range Minimum Queries

This problem set is all about range minimum queries and the techniques that power those data struc-
tures. In the course of working through it, you'll fll in some gaps from lecture and will get to see
how to generalize these techniques to other settings. Plus, you'll get the chance to implement the
techniques from lecture, which will help solidify your understanding.

Due Tuesday, April 17 at 2:30PM.

 2 / 4

Problem One: Sparse Tables with O(1) Queries (2 Points)
To compute RMQA(i, j) with a sparse table in time O(1), it's necessary to compute in time O(1) the
largest k for which 2k ≤ j – i + 1. Explain how to modify the preprocessing step of the sparse table by
adding O(n) additional work such that you can answer these queries in time O(1). Feel free to introduce
as much additional memory as you think would be necessary.

For the purposes of this problem – and, more generally, throughout the world of data structures – we’ll
need to pin down what sorts of operations you can perform on an integer that fts into a machine word in
time O(1). You can assume that any mathematical or logical operation for which there’s a built-in C oper-
ator (addition, multiplication, bitwise AND, bitshifts, etc.) take time O(1). You can also assume that the
size of the array you’re working with fts into a machine word.

However, you should not assume that more complex mathematical operations (logarithms, radicals, etc.)
can be computed in time O(1), nor should you assume access to processor-specifc bitwise operations
(e.g. popcount, bsr, etc.). These assumptions are typically made in the world of data structures.

Importantly, the runtime of your operations should not depend on the size of a machine word, and you
should not assume that the word size is necessarily 32 or 64 bits.

Problem Two: Area Minimum Queries (3 Points)
In what follows, if A is a 2D array, we'll denote by A[i, j] the entry at row i, column j, zero-indexed.

This problem concerns a two-dimensional variant of RMQ called the area minimum query problem, or
AMQ. In AMQ, you are given a fxed, two-dimensional array of values and will have some amount of
time to preprocess that array. You'll then be asked to answer queries of the form “what is the smallest
number contained in the rectangular region with upper-left corner (i, j) and lower-right corner (k, l)?”
Mathematically, we'll defne AMQA((i, j), (k, l)) to be min i ≤ s ≤ k, j ≤ t ≤ l A[s, t]. For example, consider the
following array:

31 41 59 26 53 58 97

93 23 84 64 33 83 27

95 2 88 41 97 16 93

99 37 51 5 82 9 74

94 45 92 30 78 16 40

62 86 20 89 98 62 80

Here, A[0, 0] is the upper-left corner, and A[5, 6] is the lower-right corner. In this setting:

• AMQA((0, 0), (5, 6)) = 2

• AMQA((0, 0), (0, 6)) = 26

• AMQA((2, 2), (3, 3)) = 5

For the purposes of this problem, let m denote the number of rows in A and n the number of columns.

i. Design and describe an ⟨O(mn), O(min{m, n})⟩-time data structure for AMQ.

ii. Design and describe an ⟨O(mn log m log n), O(1)⟩-time data structure for AMQ.

 3 / 4

Problem Three: Hybrid RMQ Structures (4 Points)
Let’s begin with some new notation. For any k ≥ 0, let's defne the function log(k) n to be the function

log log log … log n (k times)

For example:

log(0) n = n log(1) n = log n log(2) n = log log n log(3) n = log log log n

This question explores these sorts of repeated logarithms in the context of range minimum queries.

i. Using the hybrid framework, show that that for any fxed k ≥ 1, there is an RMQ data structure
with time complexity ⟨O(n log(k) n), O(1)⟩. For notational simplicity, we'll refer to the kth of these
structures as Dₖ.

(Yes, we know that the Fischer-Heun structure is a ⟨O(n), O(1)⟩ solution to RMQ and therefore
technically meets these requirements. But for the purposes of this question, let’s imagine that you
didn’t know that such a structure existed and were instead curious to see how fast an RMQ struc-
ture you could make without resorting to the Method of Four Russians. ☺)

ii. Although every D ₖ data structure has query time O(1), the query times on the D ₖ structures will
increase as k increases. Explain why this is the case and why this doesn't contradict your result
from part (i).

(The rest of this page is just for fun.)

The iterated logarithm function, denoted log* n, is defned as follows:

log* n is the smallest value of k for which log(k) n ≤ 1

Intuitively, log* n measures the number of times that you have to take the logarithm of n before n drops
to one. For example:

log* 1 = 0 log* 2 = 1 log* 4 = 2 log* 16 = 3 log* 65,536 = 4 log* 265,536 = 5

This function grows extremely slowly. For reference, the number of atoms in the universe is estimated to
be about 1080 ≈ 2240, and from the values above you can see that log* 1080 is 5.

For arrays of length n, the data structure Dlog* n is an ⟨O(n log* n), O(log* n)⟩ solution to RMQ. Given that
log* n is, practically speaking, a constant, that makes for a crazily fast RMQ data structure!

 4 / 4

Problem Four: Implementing RMQ Structures (9 Points)
In this problem, you'll implement several RMQ structures in Java. In doing so, we hope that you'll get a
better feeling for some of the complexities involved in translating data structures into code.

For the purposes of this problem, your structures should answer range minimum queries by returning the
index at which the minimum value in the range resides, rather than the value at that index. If there are
multiple values tied for the smallest, you can return the index of any one of them.

The data structures you'll be implementing will answer RMQ over arrays of floats. We've chosen arrays
of floats because ints (representing indices) and floats (representing values) aren't implicitly convert-
ible to one another in Java. In other words, if you try to assign an index to a value or vice-versa, you'll get
a compiler error rather than a runtime error.

We've provided Java starter fles at /usr/class/cs166/assignments/ps1 and a Makefle that will build
the project. The classes you need to implement are in the root directory. To run our driver program on a
particular data structure, execute the command

./run your-rmq-structure random-seedopt

Here, your-rmq-structure is the name of the class containing your RMQ structure. For example, you
could run your sparse table code by running

./run SparseTableRMQ

The random-seedopt parameter (a long) is optional and is used to force a specifc random number seed
when running the program. You might fnd this helpful during testing to guarantee that each run of the
program tests your RMQ structure on identical inputs.

i. Implement the ⟨O(n2), O(1)⟩ RMQ data structure that precomputes the answers to all possible
range minimum queries. This is mostly a warmup to make sure you're able to get our test harness
running and your code compiling.

ii. Implement a sparse table RMQ data structure. Make sure that your data structure can answer
queries in time O(1); to do so, we recommend implementing the data structure you designed in
Problem One.

Watch your memory usage here. Don’t allocate Θ(n2) memory to hold a table of size Θ(n log n).
Java automatically zeroes out memory, so if you allocating Θ(n2) memory requies Θ(n2) time.

iii. Implement the ⟨O(n), O(log n)⟩ hybrid structure we described in the frst lecture, which combines
a sparse table with the ⟨O(1), O(n)⟩ linear-scan solution.

iv. Implement the Fischer-Heun data structure. You're welcome to implement either the slightly sim-
plifed version of the Fischer-Heun structure described in lecture (which uses Cartesian tree num-
bers and is a bit simpler to implement) or the version from the original paper (which uses ballot
numbers). You may want to base your code for this part on the code you wrote in part (iii).

Your solution here should be deterministic, meaning that you should not use the HashMap or
HashSet types. Encode your Cartesian tree numbers or ballot numbers as actual int values rather
than, say, as an ArrayList<Integer>, String, etc.

